Física Estado Sólido I – Grado en Ingeniería de Materiales – Curso 2016/17

Ejercicios para evaluación continua - Tema 5

Nombre y apellidos:		

Actualmente hay cuatro tipos de materiales usados para fabricar imanes permanentes: NdFeB, SmCo, AlNiCo, y ferritas [1]. En las tablas de la página siguiente se muestran valores de las imanaciones de remanencia y campos coercitivos de imanes comerciales fabricados con ellos. Cada magnitud está indicada en dos sistemas de unidades. Además, se presenta una tabla con el rango de precios de los elementos de la tabla periódica.


- a) discutir ventajas e inconvenientes de cada material para su aplicación como imán permanente a partir de la información mostrada
- **b)** hacer una *estimación* de la energía disipada por ciclo y por unidad de volumen (en unidades del sistema internacional) de cada material.

	NdFeB [2]		M_r			H_c				
			kGs		Т		kOe		kA/m	
	NO.	GRADE	Nom.	Min.	Nom.	Min.	Nom.	Min.	Nom.	Min.
	1	N30	11.2	10.8	1.12	1.08	10.5	10.0	836	796
	2	N35	12.0	11.7	1.20	1.17	11.3	10.8	900	860
	3	N38	12.6	12.2	1.26	1.22	11.5	11.3	915	900
	4	N40	12.9	12.6	1.29	1.26	11.6	11.4	924	908
	5	N42	13.1	12.9	1.31	1.29	11.8	11.5	939	915
	6	N45	13.6	13.3	1.36	1.33	12.0	11.6	955	924
	7	N48	14.0	13.8	1.40	1.38	10.8	10.2	860	810
	8	N50	14.3	14.0	1.43	1.40	10.8	10.0	860	794
	9	N52	14.5	14.2	1.45	1.42	10.8	10.0	860	794

AlNiCo [2]	M_r		H_c	
	[mT]	[Gs]	[KA/m]	[Oe]
*Ln9	690	6900	37	470
*Ln10	600	6000	40	500
*LNG12	720	7200	45	600
LNG13	700	7000	48	600
LNG16	800	8000	53	660
LNG18	1050	10500	48	600
LNG34	1180	11800	44	550
LNG37	1200	12000	48	600
LNG40	1250	12500	48	600
LNG44	1250	12500	52	650

SmCo [2]		N	I_r	H_c		
		Т	kGs	kOe	kA/m	
	1	0.81-0.85	8.1-8.5	7.8-8.3	620-660	
	2	0.85-0.90	8.5-9.0	8.3-8.8	660-700	
	3	0.90-0.94	9.0-9.4	8.5-9.1	680-725	
	4	0.92-0.96	9.2-9.6	8.9-9.4	710-750	
SmCo5	5	0.96-1.00	9.6-10.0	9.2-9.7	730-770	
	6	0.85-0.90	8.5-9.0	8.3-8.8	660-700	
	16	0.95-1.02	9.5-10.2	8.7-9.4	700-750	
	17	1.02-1.05	10.2-10.5	9.4-9.8	750-780	
	18	1.03-1.08	10.3-10.8	9.5-10.0	756-796	
	19	1.08-1.10	10.8-11.0	9.9-10.5	788-835	
Sm2Co17	20	1.10-1.13	11.0-11.3	10.2-10.6	811-845	

Ferritas [2]	N	I_r	H_c		
	mT	Kgs	[KA/m]	[Oe]	
Y10T	200-235	2.0-2.35	125-160	1.57-2.01	
Y20	320-380	3.2-3.8	135-190	1.70-2.38	
Y20H	310-360	3.1-3.6	220-250	2.77-3.14	
Y23	320-370	3.2-3.7	170-190	2.14-2.38	
Y25	360-380	3.6-4.0	135-170	1.70-2.14	
Y26H	360-390	3.6-3.9	220-250	2.77-3.14	
Y27H	370-400	3.7-4.0	205-250	2.58-3.14	
Y30	370-400	3.7-4.0	175-210	2.20-2.64	
Y30BH	380-390	3.8-3.9	223-235	2.880-2.95	
Y30-1	380-400	3.8-4.0	230-275	2.89-3.46	
Y30H-2	395-415	3.95-4.15	275-300	3.46-3.77	
Y32	400-420	4.0-4.2	160-190	2.01-2.38	

[2] http://www.zhaobao-magnet.com/

[3] J. M. D. Coey, Critical Materials for Magnetism (conferencia, 2011)